Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
World J Clin Cases ; 12(4): 737-745, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38322685

RESUMO

BACKGROUND: As one of the fatal diseases with high incidence, lung cancer has seriously endangered public health and safety. Elderly patients usually have poor self-care and are more likely to show a series of psychological problems. AIM: To investigate the effectiveness of the initial check, information exchange, final accuracy check, reaction (IIFAR) information care model on the mental health status of elderly patients with lung cancer. METHODS: This study is a single-centre study. We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022. These elderly patients with lung cancer were randomly divided into two groups, with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol. The differences in psychological distress, anxiety and depression, life quality, fatigue, and the locus of control in psychology were compared between these two groups, and the causes of psychological distress were analyzed. RESULTS: After the intervention, Distress Thermometer, Hospital Anxiety and Depression Scale (HADS) for anxiety and the HADS for depression, Revised Piper's Fatigue Scale, and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group (P < 0.05). After the intervention, Quality of Life Questionnaire Core 30 (QLQ-C30), Internal Health Locus of Control, and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group, and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group (P < 0.05). CONCLUSION: The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression, psychological distress, and fatigue, improving their tendencies on the locus of control in psychology, and enhancing their life qualities.

2.
Int J Obes (Lond) ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341506

RESUMO

OBJECTIVE: Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM). METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/ß-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot. RESULTS: Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of ß-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). CONCLUSIONS: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.

3.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374108

RESUMO

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Assuntos
Canabidiol , Cocaína , Receptores de Canabinoides , Transtornos Relacionados ao Uso de Substâncias , Animais , Camundongos , Ratos , Canabidiol/análogos & derivados , Cocaína/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Nicotina/farmacologia , Preparações Farmacêuticas/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
4.
Chin Med ; 19(1): 27, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365794

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is a prevalent complication of diabetes and the leading cause of end-stage renal disease. Recent evidence suggests that total flavonoids of Astragalus (TFA) has promising effects on diabetes; however, its influence on DKD and the underlying mechanism remains unclear. METHODS: In this study, we induced the DKD model using streptozotocin (STZ) in male C57BL/6J mice and utilized glomerular endothelial cell (GEC) lines for in vitro investigations. We constructed a network pharmacology analysis to understand the mechanism of TFA in DKD. The mechanism of TFA action on DKD was investigated through Western blot analysis and multi-immunological methods. RESULTS: Our findings revealed that TFA significantly reduced levels of urinary albumin (ALB). Network pharmacology and intracellular pathway experiments indicated the crucial involvement of the PI3K/AKT signaling pathway in mediating these effects. In vitro experiments showed that TFA can preserve the integrity of the glomerular filtration barrier by inhibiting the expression of inflammatory factors TNF-alpha and IL-8, reducing oxidative stress. CONCLUSION: Our findings demonstrated that TFA can ameliorates the progression of DKD by ameliorating renal fibrosis and preserving the integrity of the kidney filtration barrier. These results provide pharmacological evidence supporting the use of TFA in the treatment of kidney diseases.

5.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236296

RESUMO

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Assuntos
Medo , Genes Precoces , Fatores de Troca do Nucleotídeo Guanina , Memória , Transdução de Sinais , Animais , Camundongos , Proteína 1 de Resposta de Crescimento Precoce/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-fos
6.
Zool Res ; 45(1): 1-12, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114428

RESUMO

Changes in protein abundance and reversible protein phosphorylation (RPP) play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes. To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation, we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog, Nanorana parkeri, living on the Qinghai-Xizang (Tibet) Plateau (QTP). In total, 5 170 proteins and 5 695 phosphorylation sites in 1 938 proteins were quantified. Based on proteomic analysis, 674 differentially expressed proteins (438 up-regulated, 236 down-regulated) were screened in hibernating N. parkeri versus summer individuals. Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways, whereas lower expressed proteins were mainly involved in metabolic processes. A total of 4 251 modified sites (4 147 up-regulated, 104 down-regulated) belonging to 1 638 phosphoproteins (1 555 up-regulated, 83 down-regulated) were significantly changed in the liver. During hibernation, RPP regulated a diverse array of proteins involved in multiple functions, including metabolic enzymatic activity, ion transport, protein turnover, signal transduction, and alternative splicing. These changes contribute to enhancing protection, suppressing energy-consuming processes, and inducing metabolic depression. Moreover, the activities of phosphofructokinase, glutamate dehydrogenase, and ATPase were all significantly lower in winter compared to summer. In conclusion, our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.


Assuntos
Anuros , Proteômica , Humanos , Animais , Fosforilação , Tibet
7.
J Nutr ; 154(2): 590-599, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159812

RESUMO

BACKGROUND: Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are critical for proper fetal brain growth and development. Gestational diabetes mellitus (GDM) could affect maternal-fetal fatty acid metabolism. OBJECTIVE: This study aimed to explore the effect of GDM and high-fat (HF) diet on the DHA transport signaling pathway in the placenta-brain axis and fatty acid concentrations in the fetal brain. METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish an animal model of GDM. Eighty female C57BL/6J mice were randomly divided into control (CON), GDM, HF, and HF+GDM groups. The fatty acid profiles of the maternal liver and fetal brain were analyzed by gas chromatography. In addition, we analyzed the protein amounts of maternal liver fatty acid desaturase (FADS1/3), elongase (ELOVL2/5) and the regulatory factor sterol-regulatory element-binding protein (SREBP)-1c, and the DHA transport signaling pathway (Wnt3/ß-catenin/MFSD2a) of the placenta and fetal brain using western blotting. RESULTS: GDM promoted the decrease of maternal liver ELOVL2, ELOVL5, and SREBP-1c. Accordingly, we observed a significant decrease in the amount of maternal liver arachidonic acid (AA), DHA, and total n-3 PUFA and n-6 PUFA induced by GDM. GDM also significantly decreased the amount of DHA and n-3 PUFA in the fetal brain. GDM downregulated the Wnt3/ß-catenin/MFSD2a signaling pathway, which transfers n-3 PUFA in the placenta and fetal brain. The HF diet increased n-6 PUFA amounts in the maternal liver, correspondingly increasing linoleic acid, gamma-linolenic acid, AA, and total n-6 PUFA in the fetal brain, but decreased DHA amount in the fetal brain. However, HF diet only tended to decrease placental ß-catenin and MFSD2a amounts (P = 0.074 and P = 0.098, respectively). CONCLUSIONS: Maternal GDM could affect the fatty acid profile of the fetal brain both by downregulating the Wnt3/ß-catenin/MFSD2a pathway of the placental-fetal barrier and by affecting maternal fatty acid metabolism.


Assuntos
Diabetes Gestacional , Ácidos Graxos Ômega-3 , Humanos , Animais , Camundongos , Feminino , Gravidez , Diabetes Gestacional/metabolismo , Ácidos Graxos/metabolismo , Placenta/metabolismo , beta Catenina/metabolismo , Camundongos Endogâmicos C57BL , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Araquidônico , Encéfalo/metabolismo
8.
Res Sq ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37886574

RESUMO

Cannabis legalization continues to progress in the USA for medical and recreational purposes. G protein-coupled receptor 55 (GPR55) is a putative "CB3" receptor. However, its functional role in cannabinoid action and drug abuse is not explored. Here we report that GPR55 is mainly expressed in cortical and subcortical glutamate neurons and its activation attenuates nicotine taking and seeking in rats and mice. RNAscope in situ hybridization detected GPR55 mRNA in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons in wildtype, but not GPR55-knockout, mice. GPR55 mRNA was not detected in midbrain dopamine (DA) neurons in either genotype. Immunohistochemistry assays detected GPR55-like staining, but the signal is not GPR55-specific as the immunostaining was still detectable in GPR55-knockout mice. We then used a fluorescent CB1-GPR55 ligand (T1117) and detected GPR55 binding in cortical and subcortical glutamate neurons, but not in midbrain DA neurons, in CB1-knockout mice. Systemic administration of O-1602, a GPR55 agonist, dose-dependently increased extracellular glutamate, not DA, in the nucleus accumbens. Pretreatment with O-1602 failed to alter Δ9-tetrahydrocannabinol (D9-THC)-induced triad effects or intravenous cocaine self-administration, but it dose-dependently inhibited nicotine self-administration under fixed-ratio and progressive-ratio reinforcement schedules in rats and wildtype mice, not in GPR55-knockout mice. O-1602 itself is not rewarding or aversive as assessed by optical intracranial self-stimulation (oICSS) in DAT-Cre mice. These findings suggest that GPR55 is functionally involved in nicotine reward process possibly by a glutamate-dependent mechanism, and therefore, GPR55 deserves further research as a new therapeutic target for treating nicotine use disorder.

9.
Biol Psychiatry Glob Open Sci ; 3(4): 673-685, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881538

RESUMO

Background: The neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods: We used AAV (adeno-associated virus) neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57BL/6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results: PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex to hypothalamus, impairs c-fos activation and corticotropin-releasing hormone (CRH) messenger RNA elevation in the paraventricular nucleus after 2 hours of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in nonhypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala, on the other hand, attenuates ARS-induced hypophagia, along with extended amygdala fos induction, without affecting ARS-induced CRH messenger RNA elevation in the paraventricular nucleus. PACAP projections to extended amygdala terminate at protein kinase C delta type (PKCδ) neurons in both the central amygdala and the oval bed nucleus of the stria terminalis. Silencing of PKCδ neurons in the central amygdala, but not in the oval bed nucleus of the stria terminalis, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n ≥ 3 per group. Conclusions: A frontocortical descending PACAP projection controls paraventricular nucleus CRH messenger RNA production to maintain hypothalamic-pituitary-adrenal axis activation and regulate the endocrine response to stress. An ascending PACAPergic projection from the external lateral parabrachial nucleus to PKCδ neurons in the central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.

10.
BMC Oral Health ; 23(1): 509, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480042

RESUMO

BACKGROUND: Primary failure of tooth eruption (PFE) is a rare autosome genetic disorder that causes open bite. This work aimed to report a small family of PFE(OMIM: # 125,350) with a novel PTH1R variant. One of the patients has a rare clinical phenotype of the anterior tooth involved only. CASE PRESENTATION: The proband was a 13-year-old young man with an incomplete eruption of the right upper anterior teeth, resulting in a significant open-bite. His left first molar partially erupted. Family history revealed that the proband's 12-year-old brother and father also had teeth eruption disorders. Genetic testing found a novel PTH1R variant (NM_000316.3 c.1325-1336del), which has never been reported before. The diagnosis of PFE was based on clinical and radiographic characteristics and the result of genetic testing. Bioinformatic analysis predicted this variant would result in the truncation of the G protein-coupled receptor encoded by the PTH1R, affecting its structure and function. CONCLUSION: A novel PTH1R variant identified through whole-exome sequencing further expands the mutation spectrum of PFE. Patients in this family have different phenotypes, which reflects the characteristics of variable phenotypic expression of PFE.


Assuntos
Biologia Computacional , Erupção Dentária , Humanos , Masculino , Dente Molar , Mutação , Fenótipo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Erupção Dentária/genética , Criança , Adolescente
11.
J Neuroendocrinol ; 35(11): e13286, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37309259

RESUMO

Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive pituitary adenylate cyclase-activating peptide (PACAP) knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type (WT) in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in WT mice that do not occur in knockout mice (aPRGs). Comparing constitutive PACAP knockout mice to a variety of temporally and regionally specific PACAP knockouts, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knockout mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.


Assuntos
Neurotransmissores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Neurônios/metabolismo , Fenótipo , Camundongos Knockout
12.
Neural Regen Res ; 18(5): 1099-1106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36254999

RESUMO

Skin-derived precursor Schwann cells have been reported to play a protective role in the central nervous system. The neuroprotective effects of skin-derived precursor Schwann cells may be attributable to the release of growth factors that nourish host cells. In this study, we first established a cellular model of Parkinson's disease using 6-hydroxydopamine. When SH-SY5Y cells were pretreated with conditioned medium from skin-derived precursor Schwann cells, their activity was greatly increased. The addition of insulin-like growth factor-2 neutralizing antibody markedly attenuated the neuroprotective effects of skin-derived precursor Schwann cells. We also found that insulin-like growth factor-2 levels in the peripheral blood were greatly increased in patients with Parkinson's disease and in a mouse model of Parkinson's disease. Next, we pretreated cell models of Parkinson's disease with insulin-like growth factor-2 and administered insulin-like growth factor-2 intranasally to a mouse model of Parkinson's disease induced by 6-hydroxydopamine and found that the level of tyrosine hydroxylase, a marker of dopamine neurons, was markedly restored, α-synuclein aggregation decreased, and insulin-like growth factor-2 receptor down-regulation was alleviated. Finally, in vitro experiments showed that insulin-like growth factor-2 activated the phosphatidylinositol 3 kinase (PI3K)/AKT pathway. These findings suggest that the neuroprotective effects of skin-derived precursor Schwann cells on the central nervous system were achieved through insulin-like growth factor-2, and that insulin-like growth factor-2 may play a neuroprotective role through the insulin-like growth factor-2 receptor/PI3K/AKT pathway. Therefore, insulin-like growth factor-2 may be an useful target for Parkinson's disease treatment.

13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1917-1921, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36476926

RESUMO

Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, its diagnosis and prognosis evaluation mainly depends on tissue biopsy and imaging examination. As a part of liquid biopsy, circulating tumor DNA (ctDNA) is a novel noninvasive and real-time tumor-specific biomarker, which can reliably reflect the comprehensive tumor genetic profiles, and it plays an important role in assisting early diagnosis, monitoring the curative effect, prognosis evaluation and prediction of recurrence of DLBCL. This review summarized recent research progress of ctDNA in DLBCL.


Assuntos
DNA Tumoral Circulante , Linfoma Difuso de Grandes Células B , Humanos
14.
Sci Adv ; 8(35): eabo1440, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054363

RESUMO

Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.

15.
Front Bioeng Biotechnol ; 10: 936951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845399

RESUMO

Our general purpose was to provide a theoretical and practical foundation for the use of exosomes (EXOs) that have high levels of CD47 as stable and efficient drug carriers. Thus, we prepared EXOs from adipose tissue-derived mesenchymal stromal cells (ADMSCs) that had high levels of CD47 (EXOsCD47) and control EXOs (without CD47), and then compared their immune escape in vivo and their resistance to phagocytosis in vitro. Nanoflow cytometry was used to determine the CD47 level in these EXOs, and the amount of EXOsCD47 that remained in rat plasma at 3 h after intraperitoneal injection. Phagocytosis of the EXOs was also determined using in vitro rat macrophage bone marrow (RMA-BM) experiments. Our in vitro results showed that macrophages ingested significantly more control EXOs than EXOsCD47 (p < 0.01), with confirmation by ultra-high-definition laser confocal microscopy. Consistently, our in vivo results showed that rats had 1.377-fold better retention of EXOsCD47 than control EXOs (p < 0.01). These results confirmed that these engineered EXOsCD47 had improved immune escape. Our results therefore verified that EXOsCD47 had increased immune evasion relative to control EXOs, and have potential for use as drug carriers.

16.
J Neurosci ; 42(11): 2327-2343, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35091501

RESUMO

It is well established that glutamate plays an important role in drug-induced and cue-induced reinstatement of drug seeking. However, the role of glutamate in drug reward is unclear. In this study, we systemically evaluated the effects of multiple glutamate transporter (GLT) inhibitors on extracellular glutamate and dopamine (DA) in the nucleus accumbens (NAc), intravenous cocaine self-administration, intracranial brain-stimulation reward (BSR), and reinstatement of cocaine seeking in male and female rats. Among the five GLT inhibitors we tested, TFB-TBOA was the most potent. Microinjections of TFB-TBOA into the NAc, but not the ventral tegmental area (VTA), or dorsal striatum (DS), dose-dependently inhibited cocaine self-administration under fixed-ratio and progressive-ratio (PR) reinforcement schedules, shifted the cocaine dose-response curve downward, and inhibited intracranial BSR. Selective downregulation of astrocytic GLT-1 expression in the NAc by GLT-1 antisense oligonucleotides also inhibited cocaine self-administration. The reduction in cocaine self-administration following TFB-TBOA administration was NMDA GluN2B receptor dependent, and rats self-administering cocaine showed upregulation of GluN2B expression in NAc DA- and cAMP-regulated phosphoprotein 32 (DARPP-32)-positive medium-spiny neurons (MSNs). In contrast, TFB-TBOA, when locally administered into the NAc, VTA, or ventral pallidum (VP), dose-dependently reinstated cocaine-seeking behavior. Intra-NAc TFB-TBOA-evoked drug-seeking was long-lasting and NMDA/AMPA receptor dependent. These findings, for the first time, indicate that glutamate in the NAc negatively regulates cocaine's rewarding effects, while an excess of glutamate in multiple brain regions can trigger reinstatement of drug-seeking behavior.SIGNIFICANCE STATEMENT It is well known that glutamate plays an important role in relapse to drug seeking. However, the role of glutamate in drug reward is less clear. Here, we report that TFB-TBOA, a highly potent glutamate transporter (GLT) inhibitor, dose-dependently elevates extracellular glutamate and inhibits cocaine self-administration and brain-stimulation reward (BSR), when administered locally into the nucleus accumbens (NAc), but not other brain regions. Mechanistic assays indicate that cocaine self-administration upregulates NMDA-GluN2B receptor subtype expression in striatal dopaminoceptive neurons and activation of GluN2B by TFB-TBOA-enhanced glutamate inhibits cocaine self-administration. TFB-TBOA also reinstates cocaine-seeking behavior when administered into the NAc, ventral tegmental area (VTA), and ventral pallidum (VP). These findings demonstrate that glutamate differentially regulates cocaine reward versus relapse, reducing cocaine reward, while potentiating relapse to cocaine seeking.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Astrócitos/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , N-Metilaspartato/farmacologia , Núcleo Accumbens , Ratos , Receptores de N-Metil-D-Aspartato , Autoadministração
17.
Neural Regen Res ; 17(6): 1357-1363, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34782582

RESUMO

Autophagy has been shown to play an important role in Parkinson's disease. We hypothesized that skin-derived precursor cells exhibit neuroprotective effects in Parkinson's disease through affecting autophagy. In this study, 6-hydroxydopamine-damaged SH-SY5Y cells were pretreated with a culture medium containing skin-derived precursors differentiated into Schwann cells (SKP-SCs). The results showed that the SKP-SC culture medium remarkably enhanced the activity of SH-SY5Y cells damaged by 6-hydroxydopamine, reduced excessive autophagy, increased tyrosine hydroxylase expression, reduced α-synuclein expression, reduced the autophagosome number, and activated the PI3K/AKT/mTOR pathway. Autophagy activator rapamycin inhibited the effects of SKP-SCs, and autophagy inhibitor 3-methyladenine had the opposite effect. These findings confirm that SKP-SCs modulate the PI3K/AKT/mTOR pathway to inhibit autophagy, thereby exhibiting a neuroprotective effect in a cellular model of Parkinson's disease. This study was approved by the Animal Ethics Committee of Laboratory Animal Center of Nantong University (approval No. S20181009-205) on October 9, 2018.

18.
Acta Pharmacol Sin ; 43(4): 876-888, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34316031

RESUMO

Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Dopamina , Neurônios Dopaminérgicos/metabolismo , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Accumbens , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
19.
PLoS One ; 16(8): e0256387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411194

RESUMO

Linear aggregation is present in some animals, such as the coordinated movement of ants and the migration of caterpillars and spinylobsters, but none has been reported on rotifers. The rotifers were collected and clone cultured in the laboratory at 25 ± 1°C, under natural light (light intensity ~130 lx, L:D = 14:10). The culture medium(pH = 7.3) was formulated as described by Suga et al., and rotifers were fed on the micro algae Scenedesmus obliquus grown in HB-4 medium to the exponential growth stage. When density was high (150 individuals ml-1), the behavior of rotifers was observed using a stereo microscope (Motic ES-18TZLED). In this paper, linear aggregation in Brachionus calyciflorus was found for the first time, and experiments were carried out to verify the correlation between linear aggregation and culture density of B. calyciflorus. With the increase of density, the number of aggregations increase, the number of individuals in the aggregation increased, and the maintenance time of the aggregation was also increased. Therefore, we speculate that the formation of aggregates is related to density and may be a behavioral signal of density increase, which may transmit information between density increase and formation of dormant eggs.


Assuntos
Rotíferos , Animais , Água Doce , Scenedesmus
20.
Mitochondrial DNA B Resour ; 6(3): 1194-1196, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33829085

RESUMO

The complete mitochondrial genome of Brachionus rubens was sequenced using primers design, clone culture, DNA extraction, LONG-PCR amplification, purification and clone sequencing. We found that it is composed of two circular chromosomes, designated mtDNA I (11,398 bp) and mtDNA II (12,820 bp). The gene content of the B. rubens mitochondrial genome was similar to that of the previously reported mitochondrial genome of B. plicatilis. It contained 22 tRNA genes, 2 rRNA genes and 12 protein-coding genes (PCGs). Four of the 12 PCGs had an incomplete stop codons, TA(cob, atp6, nd3)or T(cox3). The A + T content of B. rubens mitochondrial genome was apparently higher (mtDNA-I 70.2% and mtDNA II 70.4%) than that of the mitochondrial genome of B. plicatilis (mtDNA-I 63.9% and mtDNA-II 62.9%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...